H→WW and ZH in di-lepton mode with 1fb⁻¹

Qizhong Li
Fermilab

D0 Workshop 2005 Higgs Physics Meeting
June 16, 2005

SFU, Vancouver, Canada

H→WW^(*) analysis

- Analysis by Johannes Elmsheuser, Marc Hohlfeld, and Maxim Titov.
- Three channels: *ee*, *e*μ, μμ.
- Current analysis is based on 300-325 pb⁻¹ pass2 data (up to V12 trigger).
- PRL draft is under EB005 review.
- Maxim is working on V13 data, will move to p17 soon.

H→WW^(*) results and future exclusion

Limits for $\sigma \times BR(H \to WW^{(*)})$ (pb)

$M_{ m H} [{ m GeV}]$	100	120	140	160	180	200
expected limit [pb]	20.1	9.5	5.9	4.0	3.8	4.5
observed limit [pb]	19.2	5.7	4.9	3.8	4.1	3.2

Comparison of H→WW results with HWG report

	Current Analysis	HWG report	Same cuts as in HWG now			
L = 1 (fb-1)	H(160)> WW> ee					
Signal events (S)	0.635	0.325	0.24			
Background evts (B)	16.8 (10.4 WW)	1.1 (1.0 WW)	2.5 (1.6 WW)			
S/√B	0.16	0.31	0.15			
L = 1 (fb-1)	H(160)> WW> emu					
Signal events (S)	1.17	0.65	0.42			
Background evts (B)	22.3 (16.3 WW)	2.2 (2.0 WW)	3.8 (2.7 WW)			
S/√B	0.24	0.44	0.215			

Using same cuts (no likelihood) as in Tevatron HWG study now:

- Smaller selection efficiency for H→ WW → ll (HWG report assumes higher EM-id efficiency and improved muon resolution);
- Larger WW background and tt background contribution;
- Only W +jet background was considered in HWG (no W+γ bkg).

H→WW^(*) analysis for 1fb⁻¹

Current predictions for H→WW upper limits (1fb⁻¹) are worse than in HWG report;

- Most important backgrounds are:
 - W + γ /jet (for low Higgs masses) and
 - WW production (for High Higgs masses);
- W + γ /jet background (dominant statistical uncertainty):
 - Out of 4.5 Million events only 150 events survive initial preselection and
 1-10 events final cuts → more MC is needed;
 - Conversion probability is not properly modeled in MC better detector description (p17?)
 - ISR-Wγ graphs are not included in the current pythia W inclusive sample;
- WW background (WW x-section + JES are dominant systematical uncertainty):
 - Theoretical uncertainty on WW production cross section
 - − ~ 10 % WW cross section difference between CTEQ5L and CTEQ6L

H→WW analysis for 1fb⁻¹

- Improvements for the H → WW analysis are expected from:
 - Use of 'advanced analysis techniques', based on event probabilities, instead of cut-based method;
 - Improved lepton identification efficiencies and better muon resolution;
 - Better understanding of background contribution and suppression (e.g. WW, $W\gamma$)
 - → better exclusion limits

ZH search in ee channel

- Analysis by James Heinmiller, Nikos Varelas.
- Plan for the analysis:
 - Measure Z+b jet cross section
 - Compare Z+b/Z+j measurements
 - Measure Z+bb cross section (limit)
 - Look at ZH cross section limit

Z Inv Mass and pT

2 electrons

p_Te>25 GeV

2 Jets

 $E_T > 20 \text{ GeV}$

$Z(\rightarrow ee)+2jets$ with b-tagging

2 leading jets Invariant Mass

Area for improvements

- add the likelihood cut for electron
- expand electron from CC only to EC

Electrons	Z+ N jets	Z+ 2 jets	Z+2 taggable	Z+1 jlip 4%	Z+2jlip 4%
CC only	13907	219	156	27	2
CC+EC	26973	379	269	45	3
Increase	1.94	1.73	1.72	1,67	1.5

• tested on ZH (125 GeV) and Zjj→eejj

- CC only: S/sqrt(B)=9.8

- CCCC and CCEC: S/sqrt(B)=10.37

ZH in ee channel with 1fb⁻¹

- Pass 2 data sample:
 - Lumi Delivered: 533 pb⁻¹
 - Lumi Recorded: 406 pb⁻¹ 76.2% of delivered
 - Lumi in analysis: 343pb⁻¹ 64.3% of delivered
- Extrapolated to Oct. 2005 shutdown:
 - (Assuming an average of 85% of quality factor for recorded luminosity)
 - Lumi Recorded: 1 fb⁻¹
 - Lumi in analysis: ∼845 pb⁻¹

$Z(\rightarrow ee)H$ search for 1fb⁻¹

Things needed to move to p17:

- p17 Monte Carlo
- certified JES for p17
- certified JES for b tagged jets
- certified b-id for p17
- jet resolutions in data and MC for cone 0.5
- jet reco efficiencies
- EM resolutions
- EM-ID efficiencies
- electron trigger efficiency per list
- track matching efficiencies

ZH search in µµ channel

- Analysis by Yildirim, Huishi Dong
- Plan for the analysis:
 - Measure Z(-> $\mu\mu$)+bb cross section or set limit
 - ZH sensitivity set cross section limit
 - Update $\sigma(Z+b)/\sigma(Z+j)$ ratio
 - Measure Z(-> $\mu\mu$)+b cross section

$Z(\rightarrow \mu\mu)bb$

- current study on improvements
 - use x-loose JLIP tag
 - optimize μ isolation

if use loose JLIP, 0 event.

Zb/Zj expectation with 1fb⁻¹

• Gain in signal:

- x2.4 from using extra loose JLIP b-tag & Opt. on di-b
- -x1.5 from μ topological optimization
- x5 more data

• Reduce uncertainties:

- statistical error $(0.44 \rightarrow 0.13)$
- better JES uncertainty
- better JLIP b-tag uncertainty
- Mistag rate function uncertainty

Zbb and Zb expectations with 1fb⁻¹

- Zbb̄ cross section:
 - di-muon optimization: using signal significance to get optimized cut point, gain ~ factor of 1.5
 - b-tag: JES v5.3 JLIP, try other b-tag method
 - need continuous JLIP b-tag working points
 - interpolate the TRF's [Xtight, Xloose]
 - JES??
- Zb cross section:
 - with 1 fb⁻¹, we will be able to measure Zb x-section.
 - using same optimization as in Zbb study ,
 - S/sqrt(B) improve from 6.1 → 8.4

Zbb, Zb and ZH in μμ with 1fb⁻¹

- Time scale for Zbb:
 - Currently p14 for summer conference, by July(?).
 - p17 analysis package (CAF based) ready by Sept.
 - small data sample for develop code, July-Sept.
 - large data sample and MC sample, Sept.-Dec.
 - Note ready by mid Dec.
- new Zb/Zj and σ (Zb) study begins in 2006.
- Higgs search (ZH) in 2006.